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ABSTRACT: Models have historically been the source of global soil moisture (SM) analyses and estimates of land–
atmosphere coupling, even though they are usually calibrated and validated only locally. Satellite-based analyses have
grown in fidelity and duration, offering an independent observationally based alternative. However, satellite-retrieved SM
time series include random and periodic errors that degrade estimates of land–atmosphere coupling, including correlations
with other variables. This study proposes a mathematical approach to adjust daily time series of the European Space
Agency (ESA) Climate Change Initiative (CCI) satellite SM product using information from physically based land surface
model (LSM) datasets using a Fourier transform time-filtering method to match the temporal power spectra locally to the
LSMs, which tend to agree well with in situ observations. When the original and timely adjusted SM products are evaluated
against ground-based SM measurements over the conterminous United States, Europe, and Australia, results show the
adjusted SM has significantly improved subseasonal variability. The skill of the adjusted SM is increased in temporal
correlation by ∼0.05 over all analysis domains without introducing spurious regional patterns, affirming the stochastic
nature of noise in satellite estimates, and skill improvement is found for nearly all land cover classes, especially savannas
and grassland. Autocorrelation-based soil moisture memory (SMM) and the derived random component of soil moisture
error (SME) are used to investigate the improvement of SM features. The time filtering reduces the random noise from the
satellite-based SM product that is not explainable by physically based SM dynamics; SME is usually diminished and the
increased SMM is generally statistically significant.
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1. Introduction

Land surface conditions play an important role in the devel-
opment of extreme climate events, and many other processes
related to the land–atmosphere interactions via the energy
and water cycles (Dirmeyer et al. 2021; Seneviratne et al.
2010; Seo et al. 2020). In particular, soil moisture (SM) is a
key component in hydrological and meteorological processes,
which is designated an essential climate variable by the World
Meteorological Organization (WMO), having a persistence or
memory that can contribute to forecast skill at time scales up
to at least 1–2 months (i.e., subseasonal; Dirmeyer et al. 2018;
Dirmeyer et al. 2016; Seo et al. 2019). Daily soil moisture data
are used to estimate many key land–atmosphere coupling
metrics (Santanello et al. 2018). Realistic SM estimates are
necessary to understand the comprehensive water, energy,
and carbon cycles at the land surface. One efficacious way to
produce a global observationally based SM product is from
remote sensing retrievals derived from active and passive
microwave satellite sensors.

Despite the increasing availability of SM data from remote
sensing, it is difficult to obtain a self-consistent long-term soil
moisture dataset because the lifespans of satellites are rela-
tively short. To produce such a long-term SM product, Dorigo

et al. (2017) combined data from various single-sensor active
and passive microwave SM instruments into a combined
global satellite-based observational SM dataset with multide-
cadal time coverage, produced as part of the European Space
Agency’s (ESA) Climate Change Initiative (CCI) program.
There are three harmonized ESA CCI SM products: a merged
ACTIVE, a merged PASSIVE, and a COMBINED active 1

passive microwave product. Comparison of the three different
harmonized products shows the correlation coefficient of daily
SM time series is highest against in situ measurements in the
COMBINED product, while the skill of the PASSIVE product
is slightly better than that of the ACTIVE after version v03.3
(Gruber et al. 2019). Furthermore, when the skill of a merged
product like the ESA CCI SM is compared with the skill of the
single-sensor products, the merged product generally shows
comparable or superior performance (Dorigo et al. 2015).

However, all satellite SM products have systematic and ran-
dom errors (Dorigo et al. 2010; Gruber et al. 2020; Su et al.
2016). Systematic error is attributed to biases in retrieval algo-
rithms, inaccurate auxiliary data, and surface properties,
which may be corrected by removing relative differences
between the considered datasets (Gruber et al. 2016). System-
atic representativeness errors that arise from different spatial
resolutions and from spatial and temporal disagreement can
be explained by resampling approach and be corrected by sta-
tistical rescaling methods (Gruber et al. 2020; Lei et al. 2018).
Random errors may be caused by radiometric instrument per-
formance, stray background microwave contributions within
the sensors’ field of view, view angle variations, spatial resam-
pling, and imperfect parameterizations used in retrieval
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algorithms. Random errors especially undermine the ability
to use these products to properly evaluate SM dynamics such
as the rapid wetting by precipitation, and particularly the
gradual desiccation of soil by infiltration and evapotranspira-
tion. These errors, in particular, can greatly hamper the esti-
mation of land–atmosphere coupling and feedbacks
(Dirmeyer et al. 2016) and hinder the use of satellite soil
moisture to evaluate and improve coupled land–atmosphere
models.

Removal of erroneous signals not due to physically based SM
dynamics can improve the utility of satellite SM data for water
cycle process studies, model calibration, and validation. Triple
collocation has been shown to be an effective method to iden-
tify errors and produce improved soil moisture analyses by com-
bining independent datasets (Draper et al. 2013; Gruber et al.
2017). Su et al. (2013) proposed a physically based Wiener filter
[referred to as Wiener water balance (WiWB)] to reduce sto-
chastic random and systematic periodic errors in passive and
active microwave satellite SM time series, in which the denois-
ing method based on spectral analysis quantifies the difference
between a theoretical power spectrum based on a water balance
model and an empirical power spectrum from the satellite SM
dataset. Su and Ryu (2015) first proposed an analysis frame-
work, which combines multiresolution analysis and triple collo-
cation, to demonstrate scale-dependent biases and enable
multiscale bias correction of nonlinear denoising via wavelet
shrinkage technique. Massari et al. (2017) formally introduced
the Wiener wavelet (WiW) filter, which combines the robustness
of the entropy-based wavelet denoising method (EBWDM) and
the real-time applicability of a causal filter, demonstrated in an
extensive intercomparison against other denoising methods,
namely the WiWB and the moving averaging filter (MVAVG).
The results addressed the main advantages of WiW and WiWB
filters compared to MVAVG: their higher robustness, low sensi-
tivity to oversmoothing, less subjectivity in the temporal window
size and lack of necessity for additional ancillary data for
calibration.

However, these noise reduction methods have some limita-
tions. Despite the empirical water balance model underlying
the WiW and WiWB filters, the underlying assumptions per-
taining to noise and the linear approximation for the loss term
without the impact of the change of the radiation flux in terms
of the energy balance do not ensure a physically realistic time
series. In other words, these filters, to be optimized, require
local stationarity of the signal and a slowly moving mean,
whereas actual SM is generally nonstationary and influenced by
other conditions. The MVAVG method assumes that nearly
all the high-frequency components below a certain frequency
threshold are noise, which means that the method can distort
the character of the time series. In the production of a long-
term SM product, the effect of the low-frequency variability
change in the precipitation and other land surface variables
should be physically reflected in the SM variability. Otherwise,
a physical imbalance between the ground-related variables and
SM may appear, and limitations in studying long-term SM may
result. Meanwhile, triple collocation derives its effectiveness by
statistically combining observational and model soil moisture
estimates, but for model validation and development a purely

observational and model-independent dataset is preferable. It is
a challenge to characterize and account for non-physically-
related noise in satellite soil moisture estimates without unduly
affecting the physically driven component of the time series.

In our effort to produce an improved global soil moisture data-
set to estimate land–atmosphere coupling metrics, we have exam-
ined approaches to filter noise from long microwave satellite SM
time series leveraging information from the physically based con-
straints inherent in land surface model (LSM) simulations. A
Fourier transform method that focuses on the difference in noise
characteristics between observations and models has been chosen
based on the following objectives. The first objective is to quan-
tify improvements that can be realized in ESA CCI SM time
series through the adjustment of variance amplitude in harmonics
based on information from several different LSMs with indepen-
dent formulations. A key distinguishing feature of the filtering
method is a physics-constrained approach to resolve nonstation-
ary SM dynamics using information from physically based
numerical models across the entire time series domain. The
model SM and the improvement relative to the original ESA
CCI SM are assessed against independent in situ soil moisture
measurements. The second objective is to improve two key SM
features in the original and time-filtered ESA CCI SM products:
(i) soil moisture memory (SMM) and (ii) estimated soil moisture
error (SME). We assess the benefit of the physically based SM
time filtering in the context of global SM features as well as point
validation against in situ observations.

The paper is organized as follows. Section 2 introduces the
datasets used in this study. Section 3 describes the SM time filter
methodology, and our validation approach to measure SM
improvement. Section 4 presents and discusses the results of
this study. Finally, section 5 summarizes the results and their
implications for future applications.

2. Data

a. ESA CCI SM

The ESA CCI SM v06.1 combines four scatterometer-based
active and 10 radiometer-based passive microwave sensors from
various orbital platforms over a period of four decades. The
C-band (5.3 GHz) Active Microwave Instrument Wind Scattero-
meter (AMI-WS ERS-1/2 SCAT, 1991–2006; AMI-WS ERS-2,
1997–2007) and the C-band (5.3 GHz) Advanced Scatterometer
(ASCAT) MetOp-A (2007–19) and MetOp-B (2012–19) have
active sensors. Five passive sensors measure in the C-band (6.6
GHz) Scanning Multichannel Microwave Radiometer (SMMR,
1979–87), the K-band (19.3 GHz) Special Sensor Microwave
Imager (SSM/I, 1987–2013), the X-band (10.7 GHz) Tropical
Rainfall Measuring Mission (TRMM) Microwave Imager (TMI,
1998–2015), the X-band (10.7 GHz) FengYun-3B Microwave
Radiation Imager (FY-3B/MWRI, 2011–19), and the X-band
(10.7 GHz) Global Precipitation Measurement (GPM, 2014–20).
Another three platforms measuring passively within the X band
and C band are the Advanced Microwave Scanning Radiometer
for Earth Observing System (AMSR-E, 2002–11), WindSat
(2007–12), and the Advanced Microwave Scanning Radiometer
2 (AMSR2, 2012–19). The other two passive sensors measure in
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the L band (1.4 GHz) from the Soil Moisture and Ocean Salin-
ity (SMOS, 2010–19) and the Soil Moisture Active and Passive
mission (SMAP, 2015–19). The ESA CCI SM algorithm harmo-
nizes and merges these multiple active and passive satellite SM
retrievals to generate a consistently intercalibrated and quality-
controlled SM product with a larger spatial and temporal cover-
age than any single-sensor SM products. The combined dataset
merging all active and passive products covers 41 years
(1979–2020) at 0.258 spatial resolution, has a temporal resolu-
tion of ∼1 day and a sensed soil thickness of ∼5 cm, but it does
contain gaps at places and times when and where no measure-
ments were available. Comparisons to ESA CCI SM v05.2 are
included in the online supplemental material.

b. Offline LSM datasets

The Global Land Data Assimilation System (GLDAS) was
developed with the purpose of providing optimal land surface
states and fluxes for global applications (Rodell et al. 2004). The
system drives offline global gridded LSMs with observed near
surface atmospheric variables to calculate the time evolution of
land states and fluxes. The GLDAS-2.1 product provides near-
real-time global land surface variables from 2000 to present; this
study specifically uses the Noah LSM product. The observed
atmospheric surface conditions come from the 3-hourly Global
Data Assimilation System (GDAS) released by the National
Centers for Environmental Prediction (NCEP) and hourly sur-
face radiative fluxes and daily precipitation from the Air Force
Weather Agency (AFWA) Radiation and the Global Precipita-
tion Climatology Project (GPCP; Huffman et al. 2001). The
GLDAS-2.1 SM product using the Noah LSM is reported for
four soil layers (0–10-, 10–40-, 40–100-, and 100–200-cm depth)
with a horizontal spatial resolution of 0.258 and a 3-hourly tempo-
ral resolution.

The European Centre for Medium-Range Weather Forecasts
(ECMWF) Reanalysis version 5 Land (ERA5-Land) is an offline
simulation of the Tiled ECMWF Scheme for Surface Exchanges
over Land incorporating land surface hydrology (H-TESSEL)
LSM forced by the ERA5 climate reanalysis that is the latest
(fifth generation) global climate reanalysis dataset released by
ECMWF, but the ERA5 near surface atmospheric temperature,
humidity and pressure used to run ERA5-Land are corrected to
account for the altitude difference between the lower resolution
of ERA5 and ERA5-Land. ERA5-Land is the uncoupled open-
loop companion to the atmospheric module of the ECMWF’s
Integrated Forecasting System (IFS) and is run without land data
assimilation, compared to ERA5. The reason we adopt the
ERA5-Land rather than ERA5 is the resolution of its SM prod-
uct (ERA5 is at a lower resolution than ESACCI) and the better
representation of SM dynamics that avoids the violation of water
balance closure due to analysis increments in the data assimila-
tion scheme. ERA5-Land has four soil layers (0–7-, 7–28-,
28–100-, and 100–289-cm depth) with a horizontal spatial resolu-
tion of ∼0.18 and an hourly temporal resolution.

The Modern-Era Retrospective Analysis for Research and
Applications, version 2 (MERRA-2; Gelaro et al. 2017) reanaly-
sis dataset also provides a separate land surface product simu-
lated by the Catchment model (Koster et al. 2000) which is the

land component of the Goddard Earth Observing System version
5 (GEOS5). The Catchment LSM is driven by its assimilated
atmospheric variables in “replay” mode and the bias of the simu-
lated precipitation is further corrected with gauge- and satellite-
based precipitation observations. MERRA-2 provides surface
(0–5 cm) and root-zone (0–100 cm) soil moisture with a spatial
resolution of 0.6258 3 0.58 and 1-hourly temporal interval. There
is no direct soil moisture assimilation, so the surface water bal-
ance is preserved.

Data from all offline models are averaged to daily means for
use in this study and the three LSMs are arithmetically averaged
to produce a multimodel ensemble (MME) mean with the repre-
sentative behavior of soil moisture variability simulated by differ-
ent land surface physics. Averaging multiple LSMs results in a
superior soil moisture analysis when verified against in situ obser-
vations (Guo et al. 2007), and in the absence of calibration data a
simple mean performs consistently well (Guo and
Dirmeyer 2006). When comparing soil moisture skill of each
modeled and MME product against in situ observations over the
United States (described in the next subsection), the skill of
MME (R = 0.73) is higher than that of the other (R = 0.62, 0.68,
and 0.69 in GLDAS-2.1, MERRA2, and ERA5_land, respec-
tively) over the conterminous United States (CONUS).
Although averaging ignores different soil moisture charac-
teristics from different models, this study employs the MME
with the philosophy that the superior input data to the mod-
els results in the best performance in the application (Guo
et al. 2006).

c. In situ SM measurements

For validation over the continental domain, this study uses
in situ soil moisture measurements from the International Soil
Moisture Network (ISMN; Dorigo et al. 2011). We focus on
three regions that provide relatively high spatial densities of
observations. Over the CONUS, the Atmospheric Radiation
Measurement (ARM), FLUXNET–AMERIFLUX, Cosmic-
Ray Soil Moisture Observing System (COSMOS; Zreda et al.
2012), Plate Boundary Observatory (PBO H2O; Larson
et al. 2008), Soil Climate Analysis Network (SCAN; Schaefer
et al. 2007), Snowpack Telemetry (SNOTEL), U.S. Climate
Reference Network (USCRN; Diamond et al. 2013; Bell et al.
2013), U.S. Department of Agriculture Agricultural Research
Service (USDA-ARS; Jackson et al. 2010) network datasets
are used for the validation. FR_Aqui (Al-Yaari et al. 2018),
Danish Hydrological Observatory and Exploratorium
(HOBE; Bircher et al. 2012; Jensen and Refsgaard 2018),
ORACLE, REMEDHUS (González-Zamora et al. 2019),
Soil Moisture Observing System–Meteorological Automatic
Network Integrated Application (SMOSMANIA; Albergel
et al. 2008; Calvet et al. 2007), and Terrestrial Environmental
Observatories (TERENO; Zacharias et al. 2011) network
datasets are used for validation over the Europe. The OZNET
(Smith et al. 2012) network is used for validation over Australia.
For validation, this study uses only the hourly measurements
down to 5-cm depth with “good” quality flagged and simulta-
neously measured. After screening of the hourly data, we

S EO AND D I RMEYER 475MARCH 2022

Unauthenticated | Downloaded 01/09/23 03:58 PM UTC



FIG. 1. Spatial distribution of climatological MODIS land cover classes for 2001–17 over (a) global, (b) CONUS,
(c) Europe, and (d) southern east Australia. The open circles represent the location of ISMNmonitoring sites used for
validation (the number in parentheses in each subtitle indicates the number of in situ observations within the domain).
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calculate daily mean soil moisture and only sites with more than
30% of the entire validation date range are used.

Validation results are broken down by land cover type (Fig. 1).
Land cover categories are from the MODIS Collection 5 product
(Friedl et al. 2010) for 2001–17, which provides data at 500-m spa-
tial resolution using 17 International Geosphere–Biosphere Pro-
gramme (IGBP) classifications (Loveland and Belward 1997):
1) evergreen needleleaf forests, 2) evergreen broadleaf forests,
3) deciduous broadleaf forests, 4) deciduous needleleaf forests,
5) mixed forests, 6) closed shrubland, 7) open shrublands,
8) woody savannas, 9) savannas, 10) grasslands, 11) permanent
wetlands, 12) croplands, 13) urban and built-up lands, 14) crop-
land/natural vegetation mosaics, 15) permanent snow and ice,
16) barren, and 17) water. For categorization by land cover, we
group the IGBP classes into forest (1–5), shrubland (6–7), savan-
nas (8–9), grassland (10), wetland (11), cropland (12 and 14),
urban (13), barren (16), and snow (15) classes. For each of the
gridded soil moisture products, validation is performed on the
grid cell containing the in situ observation site.

3. Methodology

As mentioned before, satellite retrievals will contain some
degree of random error due to the vagaries of instrument-based
measurement. In situ observations of soil moisture may contain
systematic errors (biases) depending on instrument calibration,
but are generally considered to be accurate enough for purposes
of process understanding and model validation. In-ground SM
probes have considerably smaller random error than other
instrument types; remote sensing is especially prone to high
degrees of noise, even if the sensor is only meters from the soil
surface (Dirmeyer et al. 2016). This noise necessarily inflates
estimates of variance, degrades correlation calculations includ-
ing autocorrelation (used to estimate SMM and SME) and
affects estimates of metrics of land–atmosphere coupling.

In contrast, all the offline LSM datasets described above can
be considered as being ultimately precise (i.e., they free from ran-
dom measurement errors, generating nothing but “signal” from
an information perspective) but are not necessarily accurate
because of model parameter errors, parameterization shortcom-
ings or missing processes. Errors or biases may exist in the atmo-
spheric forcing terms contributing to the surface water budget
(Reichle et al. 2004), thus affecting the rate of change of surface
soil moisture. However, LSM time series will add no random
“noise” as the values of simulated soil moisture at each model
time step will be completely constrained by model physics and
precise within computational limits. That is, an LSM adds no
noise as it is deterministic}the same time series of input always
produces the same time series of output.

Gridding of precipitation observations and other meteorologi-
cal data to Earth system model resolutions acts as a partial filter
on measurement noise. The reddening of the forcing spectrum as
an LSM integrates through time to predict soil moisture acts as an
additional noise filter on the observationally based atmospheric
forcings, namely, precipitation. Thus, variance in model time
series is strongly controlled by temporal variations in the gridded
observationally based meteorological forcing modulated by LSM
parameters (soil texture, land cover type, etc.) and parameteriza-
tions, providing a reasonable target for adjusting the spectrum of
satellite soil moisture estimates. Because of evidence that varia-
tions in surface soil depth have little consequence for the tem-
poral variability of SM within ∼10-cm depth (Dirmeyer et al.
2016), comparison of model surface soil moisture with micro-
wave-based estimates from satellite is reasonable.

In this study, we combine soil moisture datasets at the daily
time scale for the 21-yr period 2000–20 to provide estimates of
noise-free power spectra of surface soil moisture. The global
gridded soil moisture products from LSMs are regridded to 0.258
spatial resolution corresponding to the ESA CCI SM. They are
utilized in the correction of the ESA CCI daily SM time series

FIG. 2. (a) Example harmonic analysis of surface SM from in situ measurement (black), LSMMME (blue), and CCI
(red) at Grouse Creek station (42.788N, 113.828W) in Utah. (b) Adjusted CCI SM harmonics (gold) after rescaling in
each harmonic. Solid and dashed lines are 7- and 300-harmonic running averaged amplitudes, respectively.
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in an attempt to minimize the imprint of random observational
errors without degrading accuracy. In this section, we describe
the Fourier transform-based method used to adjust the ESA
CCI SM time series and the validation strategy applied to evalu-
ate the performance of the timely corrected ESA CCI SM.

a. Gap filling

Since the satellite-based SM dataset does not provide spatially
and temporally complete data for the daily and global scales, we
fill missing values using information from the MME of the three
LSM simulations. If we know SM values at two times (t1 and t2)
bounded by the ends of the missing data period, we can estimate
a regression line for t in the temporal domain as

Reg t( ) � SM t2( ) 2 SM t1( )[ ]

t2 2 t1
t 1 SM t1( ), (1)

where SM is the SM value for a specified time. Based on the
regression function from MME and CCI SM datasets, we gap-
fill the CCI dataset for missing time ranges as

SMCCI t( ) � SMMME t( ) 2 RegMME t( ) 1 RegCCI t( ): (2)

However, there is a possibility that SMCCI(t) attains a nega-
tive value at one or more time steps in this procedure. In that
case, we modify Eq. (2) by multiplying an additional factor
that rescales SMMME(t) variability:

fac � Max SMMME( ) 2 Min SMMME( )
Max SMMME( ) , (3)

where Max(SMMME) and Min(SMMME) are the maximum
and minimum values of SMMME for the missing time range.
Using MME for gap filling provides consistency with the fol-
lowing step.

b. Fourier-based time series correction

Based on the gap-filled CCI SM dataset, we perform a Fourier
analysis on the harmonic spectra. A forward Fourier transform is
applied separately to the modeled LSM SM and gap-filled CCI
SM time series at each grid point across the entire time period.

FIG. 3. Standard deviation of (a) unfiltered, (c) .15-day low-pass filtered, and (e) ,15-day high-pass filtered CCI. SD difference of (b)
total, (d) low, and (f) high frequency between LSMMME and CCI surface SM. The zonal mean is shown on the right of each panel. Glob-
ally mean values are indicated in the lower-left corner of each map. Dotted area represents statistical significance of the SD difference at a
95% confidence level from a Monte Carlo method.
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The same transform is performed on the in situ time series where
available. We obtain the amplitude of each harmonic and a cen-
tered 300-harmonic running mean for each time series. Figure 2a
shows an example at one location, but as shown in the next sec-
tion, the agreement between MME and in situ time series is gen-
erally much better than for either with the remote sensing
product. While maintaining the unique information in the CCI
SM, we adjust the amplitude of all harmonics from the satellite-
based SM to agree with that of the MME, based on the centered
300-harmonic running means. This size of averaging window in
harmonic space is chosen because the 300 lowest-frequency har-
monics are found to account for an average of ∼90% of the vari-
ance of modeled surface soil moisture; results are found to be
insensitive to moderate variations in this choice (not shown).

This correction considers both the relative difference
between MME and CCI 300-harmonic running means and the
anomaly of the amplitude of each CCI harmonic relative to
the running mean:

AmpCCIadj h( ) � Amp300MME h( )
Amp300CCI h( ) AmpCCI h( ), (4)

where AmpCCI is the harmonic amplitude from the forward
Fourier transform of the gap-filled CCI SM. The terms
Amp300MME and Amp300CCI are the 300-harmonic running averaged
amplitude for the MME and the CCI SM, respectively. The
impact is shown in Fig. 2b in which the rescaled amplitude for
the number of harmonics (h) is shown at a representative loca-
tion: Grouse Creek station in Utah, United States. After the
Fourier-based amplitude correction, the SM variability across
the range of harmonics represents the observed power spectrum
well. An updated daily ESA CCI SM time series is recon-
structed via the backward Fourier transform of the adjusted
spectrum. During the backward Fourier transform, the zero-

frequency component (h = 0) from the gap-filled CCI mean is
retained unaltered to preserve the CCI time mean. This
approach can result in negative soil moisture values in a few
grid cells. At such locations, standard normal deviate scaling
(SNDS; Koster et al. 2004; Seo et al. 2019) is employed that
reduces SM variability enough to prevent negative SM while
preserving the mean value. Hereafter, we refer to the adjusted
ESA CCI SM based on the LSM simulations as CCIadj.

c. Validation strategy

For a fair comparison of the reconstructed CCIadj and LSM
SM products to the original CCI SM, we mask out days in which
the original CCI SM is missing. Additionally, frozen land surface
conditions are masked out whenever the modeled surface tem-
perature is less than 274 K. To validate the statistical significance
in the comparison between CCI and CCIadj products, we apply a
Student’s t test. In addition, the statistical significance of the dif-
ference of standard deviations between CCI andMME SM prod-
ucts is tested using a Monte Carlo approach. The null-test
probability distribution of the standard deviation of CCI is esti-
mated by random resampling, where the standard deviation is
calculated 1000 times with a randomly sampled time series for
half of the time samples. Statistical significance is determined at
the 95% level with a two-tailed test relative to the random
distribution.

Each is validated against the in situ measurements described
in section 2c. This study primarily evaluates the skill of the
SM products in terms of local temporal variations using the
Pearson correlation coefficient (R) applied to daily values of
the surface SM.

Furthermore, we evaluate the surface SMM and the esti-
mated SME. As Vinnikov and Yeserkepova (1991) proposed,
the behavior of the daily SM time series fits a first-order

FIG. 4. (a) Total and (d) high-frequency surface SM SD of ISMN in situ observations. The bias of total and high-frequency surface SM
SD in (b),(e) CCI and (c),(f) LSMMME against the observations, respectively. Domain averaged SD or its bias (DSD) are indicated in the
lower-left corner on each map.
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Markov process: its autocorrelation (r) at lag day (τ) can be
defined by

r τ( ) � exp 2 fτ( ), (5)

where f is the SM decay frequency. We estimate the SMM as
the lag at which the autocorrelation of SM drops to 1/e.
Robock et al. (1995) demonstrated a linear fitting of ln(r) as a
function of τ using observational data, where SMM is calculated
as the value of τ where linear extrapolation between ln[r(τ = 1)]
and ln[r(τ = 2)] intersects ln(r) = 21 (i.e., r = 1/e). The displace-
ment of the linear extrapolation at τ = 0 is the SME (a), a quan-
tification of the degradation of autocorrelation estimates due to
random errors. By shifting the linear best fit of ln(r) by a so as
to intersect 0 at τ = 0 (i.e., an autocorrelation of 1 at lag 0), the
corrected estimate of SMM is the time lag in which the shifted
line is intersected to ln(r) = 21 (Dirmeyer et al. 2016). This is
referred to as the “corrected” SMM, which is adopted in this
study to measure the SM persistence for in situ measurements,
CCI, and CCIadj SM.

4. Results

a. Evaluation of surface SM variability

First, we examine the standard deviation (SD) of the daily
CCI and MME SM products during the entire period in terms
of low and high frequency as well as total variability. The SD
of MME SM is calculated as the square root of multimodel
mean SM variance. Figure 3 shows the spatial distribution of
the surface SM SD in CCI and its difference map to MME
SM products, along with their zonal means. The total SD of
CCI shows the highest variability in tropical regions (Fig. 3a),
but MME has statistically significantly higher variability over
mid- to high-latitude regions (Fig. 3b). The spatial patterns
are similar for the low-frequency (15 days low-pass filtered)
SM (Fig. 3c) whereas the globally averaged amplitude of SD
for MME is 30% higher than that of the CCI (0.039 m3 m23),
where the higher variability of MME is more prominent
(Fig. 3d) compared with the difference pattern of the total SD
(cf. Fig. 3b). On the other hand, the high-frequency (15-day
high-pass filtered) variability in CCI (0.02 m3 m23) is twice
that of the MME (0.01 m3 m23) with nearly global statistical
significance, in which there is a particularly large discrepancy
over the tropics (Figs. 3e,f).

Such a comparison does not tell which product is better, so we
have compared the SM SD of CCI andMME to in situ measure-
ments over CONUS (Fig. 4). The total surface SM SD of the
observations is high in the western United States north of ∼378
latitude and over the southeastern United States (Fig. 4a) and
the high-frequency variability is quite high in the central United
States (Fig. 4d). The bias of the total surface SM SD from the
MME versus observations (20.024 m3 m23) is clearly less than
that of the CCI (20.037 m3 m23), while there is still an underes-
timation in the modeled SM variability (Figs. 4b,c). The low-fre-
quency variability is similar to the total variability (not shown).
The high-frequency surface SM SD from CCI (0.005 m3 m23)
shows a strong positive bias of 38%, especially over the
western United States, but such a large bias is not evident in

the MME (20.002 m3 m23). Moreover, the spatial pattern
of the high-frequency surface SM SD from MME (R = 0.21)
is significantly better than that from CCI (R = 20.08)
(Fig. 3e).

Vinnikov et al. (1996) noted that ground-based SM obser-
vations contain random error, and the total SM variance can
be separated into the unbiased and error terms. When we
isolate the unbiased SM variance from the random error in
surface observations, there is no statistically significant dif-
ference; the random error in total and high-frequency in situ
SM SD is only about 0.001 m3 m23 on average.

After applying the Fourier transform to the original CCI data-
set on daily time intervals, we find the corrected surface SM dem-
onstrates improved variability in total (Fig. 5a) and particularly
high-frequency time domains (Fig. 5b). For total SM variability,
the CCI represented an underestimation of 45%, but total CCIadj
variability underestimation (20.029 m3 m23) drops below 35%.
There is large overestimation in high-frequency variability in
CCI (cf. Fig. 4e), but that large bias is diminished for CCIadj
(20.001 m3 m23). Thus, the Fourier-based variability correction
results in a more realistic daily SM power spectrum.

To address the noise reduction in the CCI daily SM time
series through the time filtering, Fig. 6 presents an example of
the daily time series of surface SM from in situ observations,
CCI, CCIadj, and ERA5_land as well as daily observed and

FIG. 5. The bias of (a) total and (b) high-frequency surface SM
SD in CCIadj against the observations. Domain averaged bias
(DSD) is indicated in the lower-left corner on each map.
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ERA5_land precipitation at Grouse Creek station in Utah dur-
ing May–October 2012. The observed SM time series is closely
related to the precipitation via the surface water budget equa-
tion and ERA5_land shows such a SM response despite its
underestimation of precipitation. CCIadj clearly captures the
smoothness of the observed daily SM evolution much better

than the original version of CCI. As the surface water budget
equation is in terms of land surface fluxes and the SM tendency,
not the actual water storage, the systematic difference between
the SM climatologies is addressed here, although such a differ-
ence could be a problem in other applications (e.g., agriculture,
water resources, drought monitoring).

FIG. 7. Surface SM skill measured as the temporal correlation coefficient R between daily in situ measurements and CCIadj over
(a) CONUS, (b) Europe, and (c) Australia. (d)–(f) The skill difference between CCIadj and CCI, with red (blue) colors indicating
that CCIadj has higher (lower) skill than CCI. Domain averaged R and its difference (CCIadj minus CCI) are indicated near the
corner of each map.

FIG. 6. Time series of surface SM of in situ observations (black line), CCI (red dots), CCIadj (red line), and
ERA5_land (blue line) at Grouse Creek station (42.788N, 113.828W) for May–October 2012. The bottom graph represents
the daily time series of observed precipitation (open bars) and ERA5_land gridded precipitation forcing (blue bars).
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The skill of surface SM is measured by the correlation coef-
ficient of SM products against in situ measurements in the con-
tinental United States, Europe, and Australia. The average R
values of the CCIadj are 0.56, 0.68, and 0.77 in each continent
(Figs. 7a–c). The skill of CCIadj is better than that of CCI (DR
∼0.03, 0.03, and 0.01 over United States, Europe, and Australia,
respectively) at nearly every station. Although the skill
improvement by the application of the proposed time filtering
methodology is greater for CCI version 5.2 (supplemental
Fig. 1), which shows lower skill in the unfiltered dataset, there
is clear improvement in CCI version 6.1 as well. The skill
increase is mostly attributed to the improvement in high-
frequency variability, so that the skill measured by the anomaly
correlation coefficient, which assesses the daily time series with
the 30-day running mean removed, indicates higher correlation
for CCIadj by an average of10.05 (supplemental Fig. 2).

For the comparison of the skill of surface SM between CCI
and CCIadj across land cover classes and continent domains,
the skill is averaged by these categorizations (Fig. 8). The
median correlation skill of surface SM (Fig. 8a) increases for
CCIadj by 0.05, compared to CCI (R = 0.57) when averaged
over all in situ observation sites. The result implies that the
CCI SM time correction provides statistically significant
surface SM improvements at a 95% confidence level. The
skill improvement is more statistically significant for savan-
nas and grassland than for the other land cover classes, in
which the skill of the original CCI surface SM is relatively
poor and the number of observations employed in the vali-
dation are less. We also demonstrate the skill improvement
in the CCIadj compared to CCI categorized by each conti-
nental domain (Fig. 8b). Although skill improvement is
shown across all locations, the result is statistically signi-
ficant only over CONUS, likely due to the larger number of
observation sites.

b. Improvement of surface SM features

This study adopts the surface SMM, and SME defined in
section 3c to explore the SM features in the original CCI and
time-filtered CCIadj SM products. For a fair comparison, if
any day’s data are missing in one time series, the other data-
sets are masked out for the same day. The surface SMM of
the observations is relatively high in the western United
States north of ∼378N and in the southeastern United States
(Fig. 9a), which is quite similar to the total SM SD (cf.
Fig. 4a). The surface SMM map for CCIadj resembles the
observed spatial distribution of the SMM (Fig. 9g), more than
CCI does (Fig. 9d). The average SMM values of in situ meas-
urements, the CCI, and the CCIadj datasets over the continen-
tal United States are 25.3, 10.1, and 17.6 days, respectively,
where the SMM from CCIadj over the sites in the best match
the observations but tends to overestimate SMM in the west-
ern United States. The average SMM values in the European
region are 31.4, 22.6, and 33.7 days. For the OZNET network
in Australia, the averaged SMM values are 15.7, 15.0, and 20.6
days. When the Fourier-based time filtering is applied to the
CCI SM, the surface SMM generally increases as SM autocor-
relation increases by removing random noise in the satellite-

based SM retrieval. The result is an obvious improvement,
although there remains a noticeable underestimation of SMM
in CCIadj over CONUS.

The surface SME of the station observations due to random
instrument error on the daily time scale is minimal across the
domains, at the level of ∼0.01 in terms of volumetric soil mois-
ture (Figs. 10a–c), so we have not attempted to adjust these data.
However, the averaged surface SME values from the CCI over
CONUS, Europe, and Australia are 0.28, 0.23, and 0.08, respec-
tively. The spatial distribution of the CCI SME in CONUS is
characterized by stations with high error over the western (west
of 1058W) and eastern United States (viz., in forested regions)
(Fig. 10d). The large errors in the satellite SM product over the
United States are greatly decreased in the CCIadj where the aver-
aged estimated SME from the CCIadj is only 0.04. The averaged
values over Europe and Australia are 0.03 and 0.01, respectively,
which is comparable level to the observations.

The surface SMM and SME from the in situ observations,
the CCI, and the CCIadj are also categorized by land cover
classes (Fig. 11). CCIadj commonly represents better agree-
ment with observations across all land cover classes, where
the median value of the surface SMM from the observation is
25 days and the values from CCI and CCIadj are 11 and
19 days, respectively (Fig. 11a). The surface SMM improvement

FIG. 8. Boxplot of the correlation coefficient (R) of surface SM
from the CCI (blue) and the CCIadj (red) categorized by (a) land
cover class and (b) continent. The SM datasets are validated
against in situ measurements over CONUS, Europe, and Australia
(see Fig. 1 for locations) and categorized by land cover class. Boxes
show the median and interquartile range, and whiskers represent
the 10th and 90th percentiles. The number of sites used in the vali-
dation for each region is shown in parentheses. Orange and red
labels in the x axis indicate statistical significance at the 90% and
95% confidence level from the Student’s t test, respectively.
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is statistically significant at a 95% confidence level for all land
cover classes except shrubland. We also show the surface SME
categorized by the land cover classes (Fig. 11b). The surface
SME of the CCI is the greatest in savannas and forests, and the
decrease in SME for CCIadj is statistically significant at the 95%
confidence level for all land cover classes. Although the surface
SME of CCI v06.1 has been reduced compared to CCI v05.2
(supplemental Fig. 3), likely by the application of gap filling of
signal-to-noise ratio depending on land cover types and break-
adjusted by using ERA5 reanalysis (Preimesberger et al. 2021),
there is still room to reduce the random error component.

For the global distribution change of the surface SMM and
SME, Fig. 12 shows the spatial distributions and difference
maps for CCI and CCIadj. The spatial patterns of the SMM
from CCI and CCIadj are similar (Figs. 12a,b); the spatial cor-
relation between them is 0.62, highest in tropical margins, but
the value of the SMM increases in CCIadj. The change of
SMM is largest in the Sahara, Arabia, India, South Asia, and
CONUS (Fig. 12c). Regions with increased SMM in the
United States are spatially consistent with those having high

SMM in the observations (cf. Fig. 9a). The SMM and SME
have opposite spatial distributions (Fig. 12d); the spatial cor-
relation between them is 20.28. This is related to a decrease
in the SM autocorrelation value when the error increases due
to the random noise in satellite data, but this component of
error is greatly diminished in CCIadj (Fig. 12e) and the error
decrease is especially prominent in the Sahara and southeast-
ern United States (Fig. 12f).

Additionally, Fig. 13 compares the surface SMM and
SME from CCI and CCIadj products across various land
cover classes over the global domain (cf. Fig. 11). The CCI
SM data show high SMM in grasslands and croplands, and
low in shrublands, savannas, and forest regimes. The change
in SMM is statistically significant over the globe and the
global median values of the SMM from CCI and CCIadj
products are 8 and 12 days, respectively. The relative distri-
butions of the CCIadj SMM according to the land cover class
is similar to that of the CCI. The SME in CCI categorized
by land cover class is also similar to the observational site
analysis (cf. Fig. 11b). The SME is high in shrublands,

FIG. 9. Surface SM memory (days) from (a)–(c) the in situ measurements, (d)–(f) CCI, and (g)–(i) CCIadj over (left) CONUS, (center)
Europe, and (right) Australia. Domain median values of SM memory are indicated near the corner on each map.

S E O AND D I RMEYER 483MARCH 2022

Unauthenticated | Downloaded 01/09/23 03:58 PM UTC



savannas, barren and forests regions, and low in grasslands
and croplands, which is also in opposition to the results for
SMM. The decreased SME in the CCIadj is statistically sig-
nificant over the globe.

5. Conclusions

Only satellite-based SM products can provide global observa-
tional estimates to validate and calibrate global models, but
only if their SM time series are physically plausible. The ESA
CCI SM data unify various single-sensor active and passive
microwave SM satellites and provide a global satellite-based
observational SM dataset with multidecadal time coverage.
Although the CCI SM algorithm harmonizes and merges multi-
ple active and passive satellite SM retrievals to produce a con-
sistently intercalibrated and quality-controlled SM dataset, it
does not fully consider the physics of SM dynamics, such that
nonphysical noise (random errors) may account for a large por-
tion of the total variability in SM time series, especially at
higher frequencies. This greatly affects the usefulness of CCI
and other satellite SM products for model validation and appli-
cation in observationally based estimates of land–atmosphere

coupling indices, which quantify interactive surface processes
on daily to subseasonal time scales (Santanello et al. 2018).

To address this problem in satellite-retrieved SM products,
this study demonstrates the utility of a Fourier-based time fil-
tering method calibrated to physics-based LSM datasets (that
include water and energy balance processes) to reduce sto-
chastic random and systematic periodic errors present in the
daily CCI SM product. Filtering is conducted across the entire
time domain but has the greatest impact on short time scale
variations. This study examines the impact of the application
of the time filtering method to the CCI SM using several
measures of SM skill through validation with ground-based
measurements, and its impact on spatial features.

The results reveal that the Fourier-based time filtering
method provides added value by better representing surface
SM time series over the conterminous United States, Europe,
and Australia where in situ surface soil moisture measure-
ments are plentiful. Although the high-frequency CCI SM
variability is overestimated by more than 35% compared to
observations over CONUS, this large bias is corrected in the
Fourier-adjusted CCIadj. Furthermore, the skill improvement
in the CCIadj SM measured by temporal correlation of daily
values with observations is statistically significant by

FIG. 10. As in Fig. 9, but for surface SM error.
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DR ∼ 10.05, compared to the CCI SM product, appearing
more pronounced in savannas and grassland regimes. Also,
the skill improvement in the application of the time filtering
based on the MME is greater than using any of the individual
model products (not shown).

Meanwhile, surface SM memory is generally increased by
ameliorating the effect of random measurement noise in the
satellite-based SM retrievals. CCIadj represents better agree-
ment with observations in all land cover classes across the
observational sites. The surface SMM improvement is statisti-
cally significant for most land cover regimes except for shrub-
land. The median value of the surface SMM from the
observations is 25 days and the short-term memory bias in CCI
is cut in half by the Fourier adjustment procedure. As the time
filtering method removes noise in the CCI SM retrieval, the
estimated random SME of the CCIadj is reduced to approxi-
mately that of the in situ observations. In the global domain
analysis, we confirm that the increased memory and decreased
random error in CCIadj are statistically significant over the
globe, and especially strong over savannas, barren and forests

regions. The increase in the CCIadj SMM extends the global
median from 8 to 12 days with a significant decrease in SME.

The time filtering approach proposed in this study only
adjusts the power spectrum of CCI toward that of a multimodel
ensemble, but the pattern of day-to-day, week-to-week, etc.,
variability that is crucial to estimating many land–atmosphere
coupling metrics still comes from the global satellite product.
This approach mainly conducts denoising of the CCI product
by effectively damping high-frequency variability, which also
leads to increased autocorrelation of SM. Therefore, when the
time filtered CCI SM is used to estimate land–atmosphere cou-
pling metrics, coupling strengths are generally increased due to
higher magnitudes of correlations (due to reduced randommea-
surement noise) between SM and other variables such as sur-
face heat fluxes, near surface temperature and humidity.
Improved SM time series from the time filtering method
described in this study can be useful to improve our understand-
ing of the water, energy, and carbon cycles at the land surface,
and are a step toward production of global observationally
based estimates of land–atmosphere coupling indices.

FIG. 11. Boxplot of surface (a) SM memory and (b) SM error from in situ observations (gray),
the CCI (blue) and the CCIadj (red) over CONUS, Europe, and Australia categorized by
MODIS land cover class. Boxes show the median and interquartile range, and whiskers represent
the 10th and 90th percentiles. The number of sites in each category used in the validation is
shown in parentheses. A red label indicates statistical significance at the 95% confidence level
from the Student’s t test.
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Furthermore, when land data assimilation combines soil
moisture information from diverse satellite observations
within the platform of a LSM, e.g., in the context of historical
reanalysis, this method could potentially lead to better results
from the data assimilation system (Draper et al. 2012; Jasinski
et al. 2019; Kumar et al. 2019; Reichle et al. 2021; Seo et al.
2021). However, as this method uses information from long
time series of multiple datasets, it is likely not applicable for
real-time SM correction (e.g., providing initial states for fore-
cast models) without substantial augmentation. Then again, in
forecast applications, systematic SM biases are more of a
problem than random errors. The methodology described
here aims to improve the utility of satellite SM data for esti-
mating subseasonal time variations in soil moisture commonly
used to estimate land–atmosphere coupling metrics, such as
SMM, and can provide a more accurate dataset for model val-
idation on global scales.
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FIG. 12. (a)–(c) Surface SM memory and (d)–(f) SM error from (top) CCI, (middle) CCIadj, and (bottom) the difference between them.
The zonal mean profiles are shown to the right of each panel. Global-mean values are indicated in the bottom-left corner of each map.
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